Background 00000 00 000 The Transformation 000 0000000

Conclusion and Future Work

From Selective-ID to Full-ID IBS without Random Oracles

Sanjit Chatterjee and Chethan Kamath

Indian Institute of Science, Bangalore

November 3, 2013

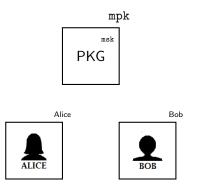
Background 00000 00 000 The Transformation

Conclusion and Future Work

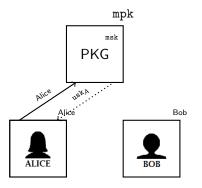
Table of contents

Overview

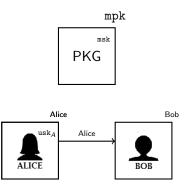
Background

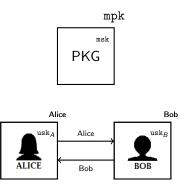

Formal Definitions The Selective-Identity Model Construction of IBS

The Transformation


Objects Used The Transformation Security

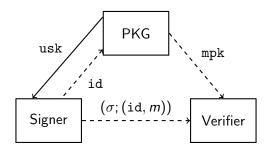
Conclusion and Future Work


- Introduced by Shamir in 1984.
- Any *arbitrary* string, say e-mail address, can be used as public key.
- Certificate management can be avoided.
- A trusted *private key generator* (PKG) generates secret keys.


- Introduced by Shamir in 1984.
- Any *arbitrary* string, say e-mail address, can be used as public key.
- Certificate management can be avoided.
- A trusted private key generator (PKG) generates secret keys.

- Introduced by Shamir in 1984.
- Any *arbitrary* string, say e-mail address, can be used as public key.
- Certificate management can be avoided.
- A trusted *private key generator* (PKG) generates secret keys.

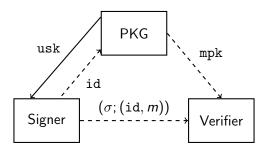
- Introduced by Shamir in 1984.
- Any *arbitrary* string, say e-mail address, can be used as public key.
- Certificate management can be avoided.
- A trusted *private key generator* (PKG) generates secret keys.



The Transformation

Identity-Based Signatures

• IBS is the concept of digital signatures *extended* to identity-based setting.



The Transformation

Identity-Based Signatures

• IBS is the concept of digital signatures *extended* to identity-based setting.

• Focus of the talk: construction of IBS schemes

0					

The Transformation

Conclusion and Future Work

FORMAL DEFINITIONS

The Transformation

Public-Key Signature

Consists of three PPT algorithms $\{\mathcal{K}, \mathcal{S}, \mathcal{V}\}$:

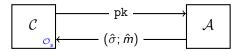
- Key Generation, K(κ)
 - Used by the *signer* to generate the key-pair (pk,sk)
 - pk is published and the sk kept secret
- Signing, $S_{sk}(m)$
 - Used by the *signer* to generate signature on some message *m*
 - The secret key sk used for signing
- Verification, $V_{pk}(\sigma, m)$
 - Used by the *verifier* to validate a signature
 - Outputs 1 if σ is a valid signature on m; else, outputs 0

Identity-Based Signature

Consists of four PPT algorithms $\{\mathcal{G}, \mathcal{E}, \mathcal{S}, \mathcal{V}\}$:

- Set-up, $\mathcal{G}(\kappa)$
 - Used by *PKG* to generate the master key-pair (mpk,msk)
 - mpk is published and the msk kept secret
- Key Extraction, $\mathcal{E}_{msk}(id)$
 - Used by *PKG* to generate the user secret key (usk)
 - usk is then distributed through a secure channel
- Signing, $S_{usk}(id, m)$
 - Used by the *signer* (with identity id) to generate signature on some message *m*
 - The user secret key usk used for signing
- Verification, $\mathcal{V}_{mpk}(\sigma, id, m)$
 - Used by the *verifier* to validate a signature
 - Outputs 1 if σ is a valid signature on m by the user with identity id; otherwise, outputs 0

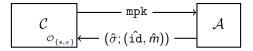
Background 00000 00 000 The Transformation


Conclusion and Future Work

STANDARD SECURITY MODELS

The Transformatic 000 00 0000000

Security Model for PKS: EU-CMA



- Existential unforgeability under chosen-message attack
- C generates key-pair (pk, sk) and passes pk to A.
- Signature Queries: Access to a signing oracle \mathcal{O}_s
- Forgery: A wins if $(\hat{\sigma}; \hat{m})$ is valid and non-trivial
- Adversary's advantage in the game Adv^{EU-CMA}_A(κ):

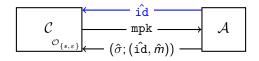
$$\mathsf{Pr}\left[1 \leftarrow \mathcal{V}_{\mathsf{pk}}(\hat{\sigma}; \hat{m}) \mid (\mathtt{sk}, \mathtt{pk}) \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{K}(\kappa); (\hat{\sigma}; \hat{m}) \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{A}^{\mathcal{O}_s}(\mathtt{pk})\right]$$

Security Model for IBS: EU-ID-CMA

- Existential unforgeability with adaptive identity under chosen-message attack
- C generates key-pair (mpk, msk) and passes mpk to A.
- Extract Queries, Signature Queries
- Forgery: A wins if (
 α; (
 id,
 m)) is valid and non-trivial
- Adversary's advantage in the game $\operatorname{Adv}_{\mathcal{A}}^{\operatorname{EU-ID-CMA}}(\kappa)$:

$$\mathsf{Pr}\left[1 \leftarrow \mathcal{V}_{\mathtt{mpk}}(\hat{\sigma}; (\hat{\mathtt{id}}, \hat{m})) \mid (\mathtt{msk}, \mathtt{mpk}) \xleftarrow{\$} \mathcal{G}(\kappa); (\hat{\sigma}; (\hat{\mathtt{id}}, \hat{m})) \xleftarrow{\$} \mathcal{A}^{\mathcal{O}_{\{s,\varepsilon\}}}(\mathtt{mpk})\right]$$

Background


The Transformation

Conclusion and Future Work

THE SELECTIVE-IDENTITY MODEL

sID Model: Salient Features

- Introduced by Canetti et al.
- Weaker than the full model (EU-ID-CMA)
 - However, *easier* to design sID-secure protocols
- Adversary has to, beforehand, commit to the target identity
 - Target identity: the identity on which the adversary forges on
 - Adversary cannot extract query on the target identity

0				

The Transformation

Conclusion and Future Work

CONSTRUCTION OF IBS

The Transformation

Conclusion and Future Work

Construction of IBS

- Considered easier task than IBE
- Folklore method: EU-ID-CMA-IBS $\equiv 2(EU-CMA-PKS)$
 - $(EU-CMA-PKS) \equiv (EU-GCMA-PKS)+(CR-CHF)$
 - Implies EU-ID-CMA-IBS $\equiv 2((EU-GCMA-PKS)+(CR-CHF))$

The Transformation

Conclusion and Future Work

Construction of IBS

- Considered easier task than IBE
- Folklore method: EU-ID-CMA-IBS $\equiv 2(EU-CMA-PKS)$
 - $(EU-CMA-PKS) \equiv (EU-GCMA-PKS)+(CR-CHF)$
 - Implies EU-ID-CMA-IBS $\equiv 2((EU-GCMA-PKS)+(CR-CHF))$
- From sID Model:
 - Random Oracle Model: guess the *index* of the target identity: polynomial degradation
 - Standard Model: guess the *target* identity itself: exponential degradation

The Transformatior 000 0000000 Conclusion and Future Work

Construction of IBS...

- Goal: construct ID-secure IBS from sID-secure IBS
 - 1. without random oracles
 - 2. with sub-exponential degradation (preferably, polynomial)

Background ○○○○○ ○○● The Transformatior 000 0000000 Conclusion and Future Work

Construction of IBS...

- Goal: construct ID-secure IBS from sID-secure IBS
 - 1. without random oracles
 - 2. with sub-exponential degradation (preferably, polynomial)
- Main result: EU-ID-CMA-IBS ≡ (EU-sID-CMA-IBS)+(EU-GCMA-PKS)+(CR-CHF)
- Further: EU-ID-CMA-IBS ≡ (EU-wID-CMA-IBS)+(EU-GCMA-PKS)+(CR-CHF)

Background 00000 00 000 The Transformation

000 00 0000000 Conclusion and Future Work

THE TRANSFORMATION

Objects used

- 1. Chameleon Hash Function
- 2. GCMA-secure PKS

Background 00000 00 000 The Transformation

Conclusion and Future Work

Chameleon Hash Function

- A family of randomised trapdoor hash functions
- Collision Resistant (CR)
- "Chameleon" property: anyone with trapdoor information can efficiently generate collisions

Chameleon Hash Function...

Consists of three PPT $\{\mathcal{G}, h, h^{-1}\}$:

Key Generation, $\mathcal{G}(\kappa)$:

• Generates evaluation key ek and trapdoor key td

Hash Evaluation, $h_{ek}(m, r)$:

• A randomiser r used to evaluate the hash

Collision Generation, $h_{td}^{-1}(m, r, m')$:

• Outputs randomiser r' such that (m, r) and (m', r') is a *collision*:

$$\mathsf{h}_{\mathtt{ek}}(m,r) = \mathsf{h}_{\mathtt{ek}}(m',r')$$

The Transformation

Conclusion and Future Work

GCMA-secure PKS

- Adversary has to, beforehand, commit to a set of messages $\tilde{\mathbb{M}}$
 - The adversary can query with \mathcal{O}_s on any message from $\tilde{\mathbb{M}}$
 - Adversary has to forge on a message not in $\tilde{\mathbb{M}}$

$$\begin{array}{c|c} & & \tilde{\mathbb{M}} \\ & & & \\ \mathcal{C}_{\sigma_s} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

The Transformation

Conclusion and Future Work

The Transformation

In a nutshell

- Takes as input:
 - 1. an EU-sID-CMA-secure IBS $\mathfrak{I}_s := \{\mathcal{G}_s, \mathcal{E}_s, \mathcal{S}_s, \mathcal{V}_s\}$
 - 2. a collision-resistant CHF $\mathfrak{H} := {\mathcal{G}_h, h, h^{-1}}$
 - 3. a GCMA-secure PKS $\mathfrak{P} := \{\mathcal{K}, \mathcal{S}_p, \mathcal{V}_p\}$
- Outputs an EU-ID-CMA-secure IBS $\mathfrak{I} := \{\mathcal{G}, \mathcal{E}, \mathcal{S}, \mathcal{V}\}$

The Transformation

Conclusion and Future Work

The Transformation

In a nutshell

- Takes as input:
 - 1. an EU-sID-CMA-secure IBS $\mathfrak{I}_s := \{\mathcal{G}_s, \mathcal{E}_s, \mathcal{S}_s, \mathcal{V}_s\}$
 - 2. a collision-resistant CHF $\mathfrak{H} := {\mathcal{G}_h, h, h^{-1}}$
 - 3. a GCMA-secure PKS $\mathfrak{P} := \{\mathcal{K}, \mathcal{S}_p, \mathcal{V}_p\}$
- Outputs an EU-ID-CMA-secure IBS $\mathfrak{I} := \{\mathcal{G}, \mathcal{E}, \mathcal{S}, \mathcal{V}\}$

The idea:

- CHF used to map identities between ${\mathfrak I}$ and ${\mathfrak I}_s$
- PKS used to bind these identities

Background 00000 00 000 The Transformation

The Transformation...

Set-up, $\mathcal{G}(\kappa)$:

- Invoke \mathcal{G}_s , \mathcal{K} and \mathcal{G}_h to obtain (msk_s, mpk_s), (sk, pk) and (ek, td)
- Return $msk := (msk_s, sk)$ and $mpk := (mpk_s, pk, ek)$

Key Extraction, $\mathcal{E}_{msk}(id)$:

- Select a random r and compute $id_s \leftarrow h_{ek}(id, r)$
- Compute $\operatorname{usk}_{s} \xleftarrow{\hspace{0.1cm}{\scriptscriptstyle{\mathbb{S}}}} \mathcal{E}_{s,\operatorname{msk}_{s}}(\operatorname{id}_{s})$ and $\sigma_{p} \xleftarrow{\hspace{0.1cm}{\scriptscriptstyle{\mathbb{S}}}} \mathcal{S}_{p,\operatorname{sk}}(\operatorname{id}_{s})$
- Return usk := (usk_s, r, σ_p)

Signing, $\mathcal{S}_{usk}(id, m)$:

- Compute $\sigma_s \xleftarrow{\hspace{0.1cm}{\scriptscriptstyle{\S}}} \mathcal{S}_{s, {\tt usk}_s}({\tt id}_s, m)$
- Return $\sigma := (\sigma_s, r, \sigma_p)$ as the signature

Verification, $\mathcal{V}_{mpk}(\sigma, id, m)$:

• Return 1 only if σ_p and σ_s are valid signatures

Overview	Background	The Transformation	Conclusion and Future
	00000	000	
	00	00	
	000	000000	

SECURITY

The Transformation

Security Argument

Strategy:

- Adversaries classified into three: type 1, type 2 and type 3
- type 1: break sID-security; type 2 or type 3: break the binding

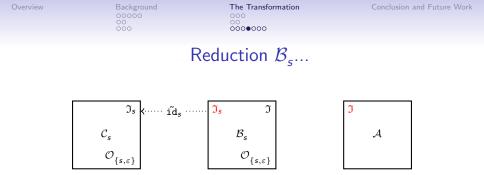
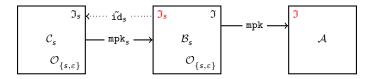
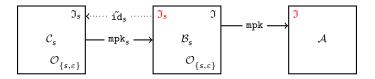

Adversary	Reduction	From	Degradation		
type 1	\mathcal{B}_{s}	\Im_s	O (<i>q₅</i>)		
type 2	\mathcal{B}_{p}	Ŗ	O (1)		
type 3	\mathcal{B}_h	Ŋ	O (1)		

Table: q_s denotes the number of signature queries

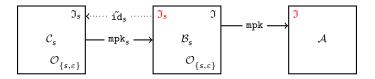
In a nutshell:


- Break sID-security plug in challenge msk_s in the IBS \Im
- type 1 adversary: target identity was queried to \mathcal{O}_s
- Strategy: guess the index of this target identity
 - Hence the $O(q_s)$ degradation

- Invoke \mathcal{K} and \mathcal{G}_h to obtain (sk, pk) and (ek, td)
- Choose random id, r and commit id := h_{ek}(id, r) to C_s as the target identity; Make a guess l

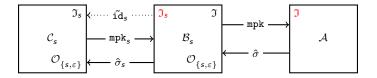

Reduction \mathcal{B}_s ...

- Invoke \mathcal{K} and \mathcal{G}_h to obtain (sk, pk) and (ek, td)
- Choose random id, r and commit id := h_{ek}(id, r) to C_s as the target identity; Make a guess l
- C_s releases mpk_s \mathcal{B}_s passes mpk := (mpk_s, pk, ek) to \mathcal{A} ;


Reduction \mathcal{B}_{s} ...

- Invoke \mathcal{K} and \mathcal{G}_h to obtain (sk, pk) and (ek, td)
- Choose random id, r and commit id := h_{ek}(id, r) to C_s as the target identity; Make a guess l
- \mathcal{C}_s releases mpk_s \mathcal{B}_s passes mpk := (mpk_s, pk, ek) to \mathcal{A} ;
- Extract Queries on id:
 - 1. If query on the ℓ^{th} identity then abort (abort_1); else map id to a random id_s
 - 2. Query oracle $\mathcal{O}_{\varepsilon}$ of \mathcal{C}_{s} with id

Reduction \mathcal{B}_{s} ...


- Signature Queries on (id, m):
 - 1. If query on the $\tilde{\ell}^{th}$ identity then map id to \tilde{id}_s (using knowledge of trapdoor td); else map to a random id_s
 - 2. Query oracle \mathcal{O}_s of \mathcal{C}_s with (id, m)

The Transformation

Conclusion and Future Work

Reduction \mathcal{B}_{s} ...

• Signature Queries on (id, m):

- 1. If query on the $\tilde{\ell}^{th}$ identity then map id to \tilde{id}_s (using knowledge of trapdoor td); else map to a random id_s
- 2. Query oracle \mathcal{O}_s of \mathcal{C}_s with (id, m)
- Forgery (σ, r, σ_p): <u>If</u> the forgery is on the ℓth identity, pass σ to C_s; <u>else</u> abort (abort₂)

The Transformation

Analysis of \mathcal{B}_s

• Success probability governed by abort₁ and abort₂:

 $\mathsf{Adv}^{\texttt{EU}-\texttt{sID}-\texttt{CMA}}_{\mathcal{B}}(\kappa) = \mathsf{Pr}\left[\neg\texttt{abort}_1 \land \neg\texttt{abort}_2\right] \times \mathsf{Adv}^{\texttt{EU}-\texttt{ID}-\texttt{CMA}}_{\mathcal{A}}(\kappa)$

• $\Pr\left[\neg \text{abort}_2\right]$ is the *same* as that of guessing $\tilde{\ell}$

 $\Pr\left[\neg \text{abort}_2\right] = 1/q_s$

• $\Pr\left[\neg \text{abort}_1 \mid \neg \text{abort}_2\right] = 1$

The Transformation

Conclusion and Future Work

Analysis of \mathcal{B}_s

Success probability governed by abort₁ and abort₂:

 $\mathsf{Adv}^{\mathtt{EU}-\mathtt{sID}-\mathtt{CMA}}_{\mathcal{B}}(\kappa) = \mathsf{Pr}\left[\neg\mathtt{abort}_1 \land \neg\mathtt{abort}_2\right] \times \mathsf{Adv}^{\mathtt{EU}-\mathtt{ID}-\mathtt{CMA}}_{\mathcal{A}}(\kappa)$

• $\Pr\left[\neg \text{abort}_2\right]$ is the same as that of guessing $\tilde{\ell}$

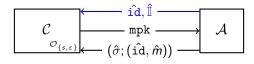
 $\Pr\left[\neg \text{abort}_2\right] = 1/q_s$

• $\Pr\left[\neg \text{abort}_1 \mid \neg \text{abort}_2\right] = 1$

Hence

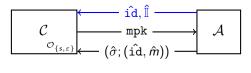
$$\mathsf{Adv}^{ extsf{EU-sID-CMA}}_{\mathcal{B}}(\kappa) = \mathsf{Adv}^{ extsf{EU-ID-CMA}}_{\mathcal{A}}(\kappa)/q_{s}$$

0				


The Transformation

Conclusion and Future Work

TRANSFORMING FROM THE wID MODEL


Transforming from the wID Model

- wID : the weak selective-identity model
- Adversary has to, beforehand, commit to the *target* identity and a set of query identities
 - Target identity: the identity on which the adversary forges on
 - Query identities: the identities which it can query with $\mathcal{O}_{\{s,\varepsilon\}}$
 - Adversary cannot extract query on the target identity

Transforming from the wID Model

- wID : the weak selective-identity model
- Adversary has to, beforehand, commit to the *target* identity and a set of query identities
 - Target identity: the identity on which the adversary forges on
 - Query identities: the identities which it can query with $\mathcal{O}_{\{s,\varepsilon\}}$
 - Adversary cannot extract query on the target identity

• A similar transformation *holds* for wID as well

• EU-ID-CMA-IBS
$$\equiv$$
 (EU- w ID-CMA-IBS)+(EU-GCMA-PKS)+(CR-CHF)

The Transformation

Conclusion and Future Work

Conclusion and Future Work

- We discussed a generic transformation from $\mathtt{sID}/\mathtt{wID}$ IBS to ID IBS
- Alternative *paradigm* for construction of IBS
- Linear degradation

Future Work

- Further *simplification* of the assumptions
- Transformation using *fewer* objects

Background 00000 00 000 The Transformation

Conclusion and Future Work

THANK YOU!